Introduction 000000 Literature o Theoretical Model

Empirical Analysis

Conclusion o

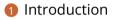
The Trade-Inflation Nexus: The Role of Production Networks

Thuy Hang Duong¹ Weifeng Larry Liu^{1,2}

¹Australian National University ²Reserve Bank of Australia

Australian Conference of Economists 2025

7-9 July 2025, Sydney


Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

tr		÷i	
	ιu		

Outline

2 Literature

- 8 Theoretical Model
- ④ Empirical Analysis

6 Conclusion


Introduct	tion
00000	

Theoretical Model

Empirical Analysis

Conclusion o

Global Inflation

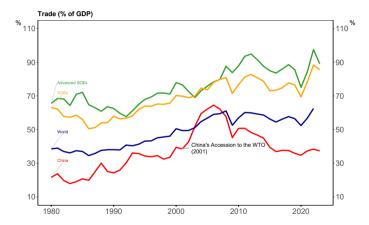
Source: Global database of inflation.

Notes: Median of annual average inflation; SOEs stands for small open economies that represent less than 5 percent of world GDP and have a trade openness larger than 30 percent of GDP.

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025


Introduction	
00000	

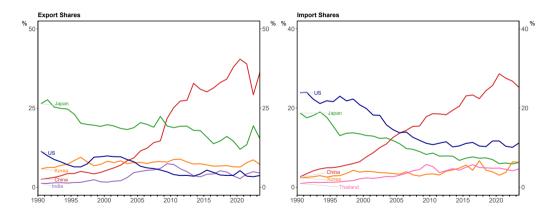
Theoretical Model

Empirical Analysis

Conclusion o

Trade Openness

Source: World Bank, World Development Indicators Notes: Data for SOEs and Advanced SOEs is the median of trade (import + export) as a percentage of GDP in SOEs and Advanced SOEs.


Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

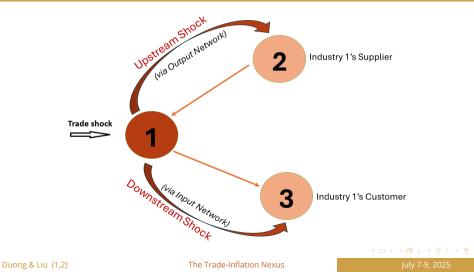
Empirical Analysis

Australia-China Bilateral Trade

Source: ABS; RBA; and authors' calculations Notes: Share of total values, annual data derived from monthly data.

Duong & Liu (1,2)

The Trade-Inflation Nexus


July 7-9 2025

Theoretical Model

Empirical Analysis

Conclusion o

Trade and Production Networks

Empirical Analysis

What is the role of production networks in transmitting price effects of trade shocks?

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

- **Theoretical IO model**: illustrate the role of production networks in propagating price effects of trade shocks.
- **Empirical analysis**: estimate direct and indirect effects of China's trade shocks on PPI inflation in Australian manufacturing sectors over 2000-2023.

Trade-inflation:

 Different mechanisms: Romer (1993), Terra (1998), Aron and Muellbauer (2007), Cooke (2010), and Samimi et al. (2012)

Microeconomic origins of aggregate fluctuations:

 Aggregate employment and production: Acemoglu, Carvalho, et al. (2012), Acemoglu, Ozdaglar, et al. (2015), and Acemoglu, D. Autor, et al. (2016)

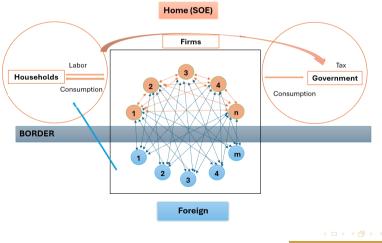
• Propagation of trade shocks within IO networks to inflation:

- Global inflation: R. Auer and Saure (2013), R. A. Auer and Mehrotra (2014), R. A. Auer, Levchenko, et al. (2019), and Di Giovanni et al. (2022)
- ▶ U.S. inflation: Jaravel and Sager (2019) and Luo and Villar (2023)

Impacts of China's integration into global trade:

- Global inflation dynamics: Eickmeier and Kühnlenz (2018)
- U.S. manufacturing labor market: D. H. Autor et al. 2013; D. H. Autor et al. 2016; Acemoglu, D. Autor, et al. 2016; D. Autor et al. 2021
- Australia: Bjørnland and Thorsrud (2016) and Dungey et al. (2020)

Duong & Liu (1,2)


The Trade-Inflation Nexus

Theoretical Model

Empirical Analysis

Conclusion

Theoretical Model

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

Firms

• A representative firm in each industry *i*:

$$y_i = z_i l_i^{\alpha_i^l} \prod_{n=1}^N x_{in}^{a_{in}} \prod_{m=1}^M x_{im}^{a_{im}}, \text{ where } \alpha_i^l + \sum_{n=1}^N a_{in} + \sum_{m=1}^M a_{im} = 1$$

• The firm minimizes its production cost:

$$v_i^y = \sum_{n=1}^N p_n x_{in} + \sum_{m=1}^M p_m x_{im} + w_i l_i$$

s.t. $y_i = \overline{y}_i$

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

			Production sector				Intermediate	Final	Total
		1		j		n	output	demand	output
	1								
Production sector	i			X_{ij}			X _i	Y _i	X_i
sector									
	n								
Intermedia	te input			$\mathbf{X}_{,j}$					
Value added				V				Y=V	
Total in	put			X_j					

Input matrix
$$A : a_{ij} = rac{p_j x_{ij}}{p_i y_i}$$
 Output matrix $B : b_{ij} = rac{p_j x_{ij}}{p_j y_j}$

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

Empirical Analysis

Conclusion

• Industrial prices:

$$\hat{P} = (I-A)^{-1} \left[-\hat{Z} + A^* \hat{P}^* + D(\alpha_I) \hat{W} \right]$$

• Industrial wages:

$$\hat{W} = (I - D(\alpha_I))^{-1} \left[V(1)\hat{Y} - \hat{Z} - (I - A)\hat{P} + A^*\hat{P}^* - \hat{L} + \hat{S}_y \right]$$

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

Introduction 000000	Literature o	Theoretical Model	Empirical Analysis	Conclusi o

Households

$$u\left(\{c_n\}_{n=1}^N; \{c_m\}_{m=1}^M; \{I_n\}_{n=1}^N\right) = \left(\sum_{n=1}^N \beta_n^I (1-I_n)^\rho + \sum_{n=1}^N \beta_n c_n^\rho + \sum_{m=1}^M \beta_m c_m^\rho\right)^{1/\rho}$$

$$\sum_{n=1}^{N} \beta_n^{\prime} + \sum_{n=1}^{N} \beta_n + \sum_{m=1}^{M} \beta_m = 1$$

s.t.
$$\sum_{n=1}^{N} p_n c_n + \sum_{m=1}^{M} p_m c_m = \sum_{n=1}^{N} w_n l_n - T$$

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

tr			÷i	
	u	u		

Theoretical Model

Empirical Analysis

Conclusion

Government

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

tr			ei.	
	u	u		

Theoretical Model

Empirical Analysis

Conclusion o

Equilibrium

$$y_i = \sum_{j=1}^N x_{ji} + c_i + g_i + e_i$$

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

Theoretical Model

Empirical Analysis

• Proposition 1: Industrial prices:

$$\hat{\mathcal{P}} = (\mathcal{I}-\mathcal{Q}_{
ho})^{-1} \left[-\mathcal{Q}_z \hat{\mathcal{Z}} + \mathcal{Q}_y \, \hat{Y} + \mathcal{Q}_g \hat{S}_g + \mathcal{Q}_{
ho^*} \, \hat{\mathcal{P}}^* + \mathcal{Q}_e \hat{S}_e
ight]$$

• **Proposition 2:** The first-order impact of import prices on industrial prices:

$$\hat{P} = \underbrace{\left(\alpha_{A^{*}}A^{*} + \frac{\rho}{1-\rho}\alpha_{S_{c^{*}}^{T}}S_{c^{*}}^{T}\right)\hat{P}^{*}}_{\text{Direct impact}} + \underbrace{\frac{\rho}{1-\rho}(\mathbf{A}-\mathbf{I})\left(V(\alpha_{c})+V(\pi)\right)S_{c^{*}}^{T}\hat{P}^{*}}_{\text{Downstream impact}} + \underbrace{\frac{\rho}{1-\rho}(\mathbf{B}^{T}-\mathbf{I})V(\alpha_{c})S_{c^{*}}^{T}\hat{P}^{*}}_{\text{Upstream impact}}$$

• **Proposition 3:** The first-order impact of export values on industrial prices:

$$\hat{P} = \underbrace{3D(\eta)D(\alpha_{e})\hat{S}_{e}}_{\text{Direct impact}} + \underbrace{(\mathbf{A} - \mathbf{I})D(\eta)D(\alpha_{e})\hat{S}_{e}}_{\text{Downstream impact}} + \underbrace{D(\eta)(\mathbf{B}^{\mathsf{T}} - \mathbf{I})D(\alpha_{e})\hat{S}_{e}}_{\text{Upstream impact}}$$

- Direct channels
 - Import shocks through the costs of imported inputs
 - Export shocks through changes in expenditures and wages
- Indirect channels
 - Upstream networks
 - Downstream networks

Empirical Methodology

• Trade exposure

$$Import_{i,t} = \frac{Australian Imports from China_{i,t}}{Australian Market Size_{i,2017/18}}$$
$$Export_{i,t} = \frac{Australian Exports to China_{i,t}}{Australian Market Size_{i,2017/18}}$$

Trade shocks

 $\begin{array}{lll} \textit{Own}: & \textit{O}_{i,t} = \Delta \textit{Import}_{i,t} \textit{ or } \Delta \textit{Export}_{i,t} \\ \textit{Upstream}: & \textit{U}_{i,t} = \sum_{j=1}^{N} \left[(\textit{b}_{ji} - \textit{1}_{j=i}) \cdot \textit{O}_{j,t} \right] \\ \textit{Downstream}: & \textit{D}_{i,t} = \sum_{j=1}^{N} \left[(\textit{a}_{ij} - \textit{1}_{j=i}) \cdot \textit{O}_{j,t} \right] \end{array}$

Duong & Liu (1,2)

The Trade-Inflation Nexus

$$\Delta \ln p_{i,t} = \sum_{k=1}^{2} \left(\alpha_k \ln \Delta p_{i,t-k} + \beta_k^O O_{i,t-k} + \beta_k^U U_{i,t-k} + \beta_k^D D_{i,t-k} \right) + \delta_t + \gamma_i + \epsilon_{i,t}$$

Duong & Liu (1,2)

The Trade-Inflation Nexus

July 7-9, 2025

• Instrument variables (D. H. Autor et al. 2013): China's trade with other countries

$$Import_{i,t}^{IV} = \frac{NonAustralian Imports from China_{i,t}^{1}}{Australian Market Size_{i,2017/18}}$$

$$Export_{i,t}^{IV} = \frac{NonAustralian \ Exports \ to \ China_{i,t}^{2}}{Australian \ Market \ Size_{i,2017/18}}$$

 $O_t^{IV} = \Delta Import_t^{IV} \text{ or } \Delta Export_t^{IV}, \qquad U_t^{IV} = (B^T - I) \cdot O_t^{IV}, \qquad D_t^{IV} = (A - I) \cdot O_t^{IV}$

Duong & Liu (1,2)

The Trade-Inflation Nexus

uly 7-9, 2025

¹ Import values from China by China's largest trading partners: USA, Japan, India, Germany, Netherlands, and Malaysia

² Export values to China from China's largest export markets: USA, Japan, Germany, Brazil, United Kingdom, Chile, and Canada 🚊 🕨 < 🚊 🕨

Data

47 manufacturing industries classified under the IOIG 2015 version over 2000-2023.

Input-Output Linkage:

• The Input-Output tables (ABS), at the 4-digit Input-Output Industry Groups (IOIG) level.

Industrial Prices:

- The Producer Price Index (PPI) for the output of manufacturing industries (ABS).
- Map from 3- or 4-digit Australian and New Zealand Standard Industrial Classification (ANZSIC) to 4-digit IOIG.

Trade Variables:

- Import and Export (value, quantity) from bilateral merchandise imports and exports (UN Comtrade).
- Map from 4- or 5-digit Standard International Trade Classification Revision 3 (SITC3) to 4-digit IOIG.

Australia's Market Size:

• The industrial total supply net exports based on the ABS's Input-Output Table.

Exchange Rate:

• The exchange rate is the normally quoted Australian dollar against the US dollar (OECD Economic Outlook).

Empirical Results

	Import	t Shocks		Export	Shocks
	OLS	2SLS		OLS	2SLS
<i>O</i> ^M , L1	0.024* (0.013)	0.076 (0.047)	<i>О^Е</i> , L1	-0.022* (0.012)	-0.237** (0.100)
<i>O</i> ^M , L2	0.145**	0.278***	<i>O^E</i> , L2	0.024	-0.190*
<i>U</i> ^M , L1	(0.062) 0.027**	(0.066) 0.059	<i>U^E</i> , L1	(0.041) -0.024**	(0.110) -0.235**
<i>U</i> ^M , L2	(0.013) 0.154**	(0.059) 0.319***	<i>U^E</i> , L2	(0.012) 0.035	(0.116) -0.162
<i>D^M.</i> L1	(0.075) -0.001	(0.084) 0.010	<i>D^E,</i> L1	(0.046) 0.002	(0.131) 0.010
D ^M , L2	(0.009) 0.004	(0.025) -0.035	<i>D^E</i> , L2	(0.003) -0.006	(0.027) -0.025
U,LZ	(0.025)	(0.036)	<i>D</i> ⁻ , LZ	(0.005)	(0.025)
N R ²	971 0.286	997 0.114		948 0.252	972 0.109

Notes: 2SLS columns report second-stage coefficients. *p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses are clustered by industry.

Duong & Liu (1,2)

The Trade-Inflation Nexus

Introduction 000000

Literature

Theoretical Model

Empirical Analysis

Conclusion o

value = price * quantity

- import prices (MP)
- export quantity (*EQ*)
- exchange rates (EX)

roduction	Literature	Theoretical Model	Empirical Analysis	C
	0		00000000	

	Im	port Price Sho	cks		Ехро	rt Quantity Sh	ocks
	Full Sample (2000-2023)	Pre-COVID (2000-2019)	COVID (2020-2023)		Full Sample (2000-2023)	Pre-COVID (2000-2019)	COVID (2020-2023)
<i>О^{МР}</i> , L1	0.262*** (0.022)	0.080** (0.031)	0.055 (0.033)	<i>О^{ЕQ}</i> , L1	-0.025** (0.009)	0.009 (0.025)	-0.139** (0.063)
<i>О^{МР}</i> , L2	0.048**	-0.006 (0.011)	0.210*** (0.059)	<i>О^{ЕQ}</i> , L2	0.037 (0.025)	0.051 (0.033)	-0.036 (0.044)
<i>U^{MP}</i> , L1	0.288*** (0.026)	0.092** (0.038)	0.084** (0.039)	<i>U^{EQ}</i> , L1	-0.024** (0.010)	0.021 (0.029)	-0.159** (0.074)
<i>U^{MP}</i> , L2	0.038** (0.016)	-0.010 (0.015)	0.211*** (0.063)	<i>U^{EQ}</i> , L2	0.043 (0.030)	0.058 (0.039)	-0.028 (0.045)
<i>D^{MP}</i> , L1	-0.018 (0.021)	-0.002 (0.005)	-0.038***	<i>D^{EQ}</i> , L1	-0.004 (0.004)	-0.011** (0.005)	0.008
<i>D^{MP}</i> , L2	0.002 (0.002 (0.008)	0.003) 0.004 (0.003)	(0.009) -0.014 (0.011)	<i>D^{EQ}</i> , L2	-0.000 (0.005)	-0.004 (0.006)	(0.022) 0.002 (0.020)
N R ²	957 0.313		57 304		947 0.267		47 286

Notes: p < 0.10, p < 0.05, p < 0.01. Standard errors in parentheses are clustered by industry.

- Direct import shocks: significant and positive.
- Direct export shocks: significant and negative.
- Upstream shocks: significant with similar magnitude to direct shocks.
- Downstream shocks: insignificant and negligible.

Conclusion

- Trade shocks are transmitted through production networks to domestic inflation.
- Australia's increased imports of low-cost manufacturing goods from China contributed to reduced inflation through consumption and production channels.
- Trade shocks affect inflation on both the demand and supply sides. Supply-side effects can be persistent due to the extended production process.
- Trade policies such as tariffs would increase inflation directly and indirectly.