Powering Down Pollution: Health and Economic Benefits of PM₁₀ Reductions from **Coal Station Closures**

Australian Conference of Economists, Sydney, 2025

Sebastian Broadhurst, University of Melbourne

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures

Background and motivation

- Coal-fired power stations in Australia are closing due to netzero targets and declining profitability.
- Regional communities (e.g. Latrobe Valley) face major economic and social transition challenges.
- Effective transition funding requires a full picture of both costs **and** benefits.
- Existing research focuses on job losses and electricity prices, but coal plant closures come with amenity and health benefits.
- This paper investigates potential **health and productivity gains** from improved air quality post-closure.

Conceptual framework

- Hypothesis: Reduced pollution improves health, productivity, and lowers healthcare costs.
- Natural experiment: Hazelwood's 2017 closure in Latrobe vs. Muswellbrook (no closure).
- Method: Difference-in-differences analysis of pollution and health outcomes.
- Aim: Quantify local health and economic benefits from cleaner air.

Methodology overview

3 key estimations

- **1.** How much did local PM₁₀ reduce in the 2017-18 period following the March 31 closure of Hazelwood coal fired-power station and coal mine.
- 2. What were the **health effects** of this lower PM_{10} ?
- 3. What is the **economic and productive value** of these health effects?

Estimating the PM₁₀ reduction

 $PM10_i = B_0 + B_1Post + B_2Treatment + B_3Post^Treatment + B_4Local_PM10_Emissions + B_5Bushfire + B_6Dust_storm$

Where,

```
PM_{10i} – Monthly average PM_{10} level, by LGA
Post – Indicator variable that =1, if the time period is after treatment time (1 April 2017)
Treatment – Indicator variable that =1, if the LGA is the treatment group (Latrobe)
Post*Treatment – interaction term showing the treatment effect
Local Industrial PM_{10} – All other local PM_{10} emissions
Bushfire – Indicator variable that =1, if there was a catastrophic bushfire nearby
Dust_storm – Indicator variable that = 1, if there was a dust_storm, land burn or
significant urban pollution
```

Results: Fall in air pollution from Hazelwood closure

Local PM₁₀ = Post + Treatment + Post*Treatment + Industrial PM₁₀ + Bushfire + Dust_storm + Post*Treat*Bushfire + Post*Treat*Industrial PM₁₀

Variable	Cluster Coeff.	Cluster SE	p-value (cluster)
Post	4.381	0.036	0.005
Treat	-0.694	0.302	0.261
 Post*Treat	-8.584	0.113	0.008
 Industrial PM_{10} (00,000s KG)	0.039	0.002	0.040
 Bushfire	5.013	0.060	0.008
 Dust storm	2.110	0.062	0.019
Post [*] Treat [*] Bushfire	-0.342	0.062	0.114
Post [*] Treat [*] Industrial <i>PM</i> ₁₀	0.054	0.002	0.029
Constant	12.155	0.450	0.024

Regression clustered by LGA

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures 6

Results: Fall in air pollution from Hazelwood closure

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures 7

Other local industrial emissions in KG

LGA	$\begin{array}{ccc} 2015 & PM_{10} \\ \text{emissions} \end{array}$	$\begin{array}{c c} 2016 & PM_{10} \\ emissions \end{array}$	$\begin{array}{c c} 2017 & PM_{10} \\ emissions \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Latrobe	6,814,454	7,936,742	8,021,327	9,987,005	
Muswellbrook	23,952,857	20,795,857	19,895,857	21,795,857	

Estimating health cases attributable to PM₁₀

- PM₁₀ reductions (Apr 2017 Jun 2018) are linked to changes in disease and mortality rates.
- Focus on three major PM10-related diseases:
 - cardiovascular disease (CVD)
 - chronic obstructive pulmonary disease (COPD)
 - asthma.
- These conditions rank high in national disease burden (AIHW: #1, #6, #9 respectively).
- In Latrobe during 2017–18 there were 4,400 CVD cases, 11,059 asthma cases, 2,088 COPD cases, and 689 deaths.

Exposure response function

$$P_0 = P_e / (1 + ((RR - 1)(E_0 - B) / 10)))$$

Where, for each different disease or mortality,

- P_0: cases before exposure
- P_e: observed health cases
- RR: relative risk of a disease/mortality (per additional 10 microgram per cubic metre increase in PM₁₀)
- E_0: PM10 exposure level
- B: Minimum threshold PM₁₀ level for health effects (5 micrograms)

Results: estimation of avoided health cases

	Deaths	CVD	Asthma	COPD	
E_0 (observed PM_{10})	14.285 $\mu g/m^3$	14.285 $\mu g/m^3$	14.285 $\mu g/m^3$	$14.285 \ \mu g/m^3$	
X_{PM} (estimated avoided PM_{10})	$8.584 \mu g/m^3$	$8.584 \ \mu g/m^3$	$8.584 \ \mu g/m^3$	$8.584 \ \mu g/m^3$	
E'_0 (estimated PM_{10})	$22.869 \mu g/m^3$	22.869 $\mu g/m^3$	22.869 $\mu g/m^3$	22.869 $\mu g/m^3$	
B (threshold for health effect)	5.000 $\mu g/m^3$	$5.000 \ \mu g/m^3$	$5.000 \ \mu g/m^3$	5.000 $\mu g/m^3$	
RR	1.043	1.013	1.039	1.098	
P_e (observed post- exposure cases)	P_e (observed 689 4440 post- $post$ - $posure$ $posure$ $posses$)		11,059	2,088	
P_0 (observed pre-exposure cases)	662.548	4387.047	10,672.539	1,913.856	
P_0 ' (estimated pre-exposure cases)	639.837	4339.202	10,338.523	1,776.848	
P_d (avoided cases)	22.711	47.845	334.016	137.008	

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures 11

Valuing health cases – value of a life lost

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures 12

Valuing health cases – value of a healthy work year

Valuing health cases – disease spread across age

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures 14

Valuing health cases – mortality spread across age

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures 15

Valuing health cases – avoided morbidity cost

	CVD	Asthma	COPD	All disease
15-24	0.00	\$99,889.37	\$0.00	\$99,889.37
25-34	\$8398.30	\$310,891.22	\$0.00	\$319,289.52
35-44	\$48,336.73	\$364,907.54	\$10,909.22	\$424,153.49
45-54	\$106,309.35	\$331,240.96	\$35,427.87	\$472,978.18
55-64	\$155,499.47	\$250,869.21	\$96,967.43	\$503,336.11
65-84	\$107,262.58	\$83,268.41	\$120,480.24	\$311,011.22
85+	\$13,615.18	\$2,969.89	\$21,475.32	\$38,060.39
All age	\$439,421.61	\$1,444,036.60	\$285,260.08	\$2,168,718.29

ACE: Powering Down Pollution: Health and Economic Benefits of PM10 Reductions from Coal Station Closures 16

Valuing health cases – avoided medical treatment cost

Disease	Adjusted national costs (000,000's)	Per case treatment cost	Avoided health cases 2017-18	Avoided treatment costs
CVD	\$12,697.72	\$10581.44	47.84	\$506,266.58
Asthma	\$756.54	\$282.27	334.02	\$94,282.10
COPD	\$738.42	\$1149.54	137.01	\$157,497.24

Valuing health cases – total avoided costs

	Mortality value	Morbidity value	Medical treatment value	Total
2017 AUD	\$3,704,616.13	\$2,168,718.29	\$758,045.92	\$6,631,380.34
2023 adjusted AUD	\$4,472,768.54	\$2,618,402.17	\$917,025.00	\$8,008,195.71

Comparison to results in contemporary literature

Study	Mortality	Asthma	COPD	CVD
This study (original)	+3.3%	+3.02%	+6.56%	+1.08%
This study (normalised)	+3.9%	+3.52%	+7.6%	+1.26%
Pope et al. (2002)	+4.0%			
Weinmayr (2010)		+2.8%		
Schikowski et al. (2005) (normalised)			+7.3%	
Liu (2022)				+1.69%

Policy implications

- Coal station closures bring measurable public health benefits.
- These benefits should be factored into regional economic transition planning.
- **Cleaner air aligns** with Latrobe's pivot to wellness, tourism, and recreation industries.
- Environmental improvements can strengthen local comparative advantages in the post-coal economy.

Limitations and areas for future work

- The study likely underestimates total benefits, it does not measure:
 - Impacts on local school performance
 - Pain and suffering from premature mortality and illness
 - Minor health symptoms (e.g. coughing, headaches, throat irritation)
 - Long-term diseases like lung cancer with delayed onset
 - **Property value increases** from improved air quality
- PM10 is used as a **proxy for broader pollution**, but coal plants emit other harmful pollutants (e.g. CO, SO₂).
- These pollutants are **positively correlated**, so measuring each separately risks **doublecounting**, however single counting underestimates effects.
- Therefore, the true health and economic benefits of cleaner air are likely **larger than estimated**.

Appendix (i)

• No anticipation effects of power station emissions prior to closure, due to real time nature of electricity generation:

	2013	2014	2015	2016
Loy Yang (KG)	3,000,000	3,200,000	3,600,000	4,100,000
Yallourn (KG)	2,300,000	3,200,000	2,100,000	2,100,000
Loy Yang B (KG)	1,700,000	1,000,000	770,000	770,000
Total (KG)	7,000,000	7,400,000	6,470,000	6,970,000

- Robustness checks performed on DiD regression:
 - Placebo test, changing treatment date to 30 April 2016: no effect detected
 - Variation of model specification, removing interaction terms.
 - Does not remove treatment effect, but lowers magnitude of effect (suggests avoided omitted variable bias)

Appendix (ii)

- Other industrial emissions continued to rise to 2023, almost doubling between 2015-2023. Mainly from new waste treatment emissions and construction material mining.
- This may have led to PM levels staying relatively stable in Latrobe to 2023.

LGA	2015	PM_{10}	2016	PM_{10}	2017	PM_{10}	2018	PM_{10}
	emission	IS	emissions		emissions		emissions	
Latrobe	6,814,454		7,936,742		8,021,327		9,987,00	05
Muswellbrook	23,952,8	57	20,795,8	357	19,895,	857	21,795,8	857

- 2019: 9,990,000 KG
- 2020: 1,100,000 KG
- 2021: 1,200,000 KG
- 2022: 1,100,000 KG
- 2023: 1,200,000 KG