Resolving New Keynesian Puzzles

Maria Eskelinen (Oxford) Christopher G. Gibbs (Sydney) Nigel McClung (Bank of Finland)

ACE

July 2025 This research does not reflect views of the Bank of Finland

Motivation I

New Keynesian Puzzles at the Zero Lower Bound (ZLB)

- The effective ZLB is a dominant feature of 21st century macroeconomic outcomes
- Modeling it properly is central to evaluating past policy and designing better policy
- Standard New Keynesian models used throughout academia and policy institutions predict *puzzling* dynamics at the ZLB

Motivation II

Consider forecasting the following policy:

 \dots the Committee decided today to keep the target range for the federal funds rate at 0 to 1/4 percent. The Committee currently anticipates that economic conditions \dots are likely to warrant exceptionally low levels for the federal funds rate at least through mid-2013.

- FOMC Statement August, 9th 2011

Motivation III

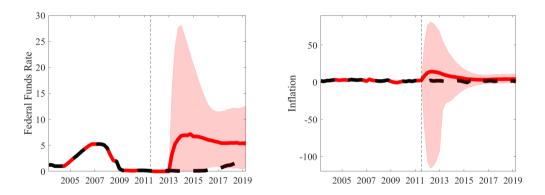


Figure: Smets and Wouters (2007) posterior estimates with data ending in 2004

Motivation III

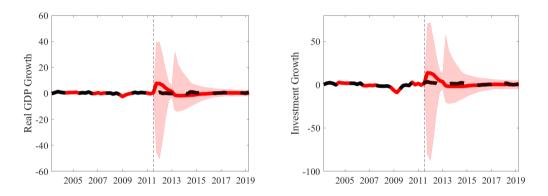


Figure: Smets and Wouters (2007) posterior estimates with data ending in 2004

Literature Review

What's wrong here? Existing literature's answer:

- Forward guidance and even modest ZLB spells are never expected/credible
 - Del Negro, Giannoni, and Patterson (2012, 2023), Haberis, Harrison, and Waldron (2019), Bundick and Smith (2020), Gibbs and McClung (2023)
- Full information rational expectations is implausible
 - Carlstrom, Fuerst, and Pastian (2015), Kiley (2016), Angeletos and Lian (2018), Farhi and Werning (2019), Gabaix (2020)
- The complete market assumption is wrong
 - McKay, Nakamura, and Steinsson (2016, 2017), Bilbiie (2020, 2024)
- Inflation is actually controlled by fiscal policy (Fiscal Theory of the Price Level)
 - Cochrane (2017, 2023)

How should we model the following policy announcement?

 \dots the Committee decided today to keep the target range for the federal funds rate at 0 to 1/4 percent. The Committee currently anticipates that economic conditions \dots are likely to warrant exceptionally low levels for the federal funds rate at least through mid-2013.

- FOMC Statement August, 9th 2011

Modeling decisions

1 Choose a model of the U.S. economy...

Modeling decisions

1 Choose a model of the U.S. economy...

- Smets and Wouters (2007)

- 1 Choose a model of the U.S. economy...
 - Smets and Wouters (2007)
- Ochoose a monetary policy objective...

- 1 Choose a model of the U.S. economy...
 - Smets and Wouters (2007)
- Ochoose a monetary policy objective...
 - Stabilize inflation around a target and close the output gap

- 1 Choose a model of the U.S. economy...
 - Smets and Wouters (2007)
- Ochoose a monetary policy objective...
 - Stabilize inflation around a target and close the output gap
- **6** Choose an interpretation of the policy statement...

- 1 Choose a model of the U.S. economy...
 - Smets and Wouters (2007)
- Ochoose a monetary policy objective...
 - Stabilize inflation around a target and close the output gap
- **3** Choose an interpretation of the policy statement...
 - Credible commitment to zero interest rates for seven quarters

- 1 Choose a model of the U.S. economy...
 - Smets and Wouters (2007)
- Ochoose a monetary policy objective...
 - Stabilize inflation around a target and close the output gap
- **6** Choose an interpretation of the policy statement...
 - Credible commitment to zero interest rates for seven quarters
- O Choose a policy to implement in expectation following the end of the commitment...

- 1 Choose a model of the U.S. economy...
 - Smets and Wouters (2007)
- Ochoose a monetary policy objective...
 - Stabilize inflation around a target and close the output gap
- **6** Choose an interpretation of the policy statement...
 - Credible commitment to zero interest rates for seven quarters
- O Choose a policy to implement in expectation following the end of the commitment...
 - What does policy do after lift off?

How do we model lift off policy?

• Do you think the monetary policy objectives are the same after before, during, and after the ZLB?

How do we model lift off policy?

- Do you think the monetary policy objectives are the same after before, during, and after the ZLB?
 - *My answer:* Yes! Objectives are the same. ZLB is constraint on an instrument and not a policy regime change.

How do we model lift off policy?

- Do you think the monetary policy objectives are the same after before, during, and after the ZLB?
 - *My answer:* Yes! Objectives are the same. ZLB is constraint on an instrument and not a policy regime change.
- All else equal, do you think that interest rates would rise faster after seven quarters if inflation is above target during the ZLB episode?

How do we model lift off policy?

- Do you think the monetary policy objectives are the same after before, during, and after the ZLB?
 - *My answer:* Yes! Objectives are the same. ZLB is constraint on an instrument and not a policy regime change.
- All else equal, do you think that interest rates would rise faster after seven quarters if inflation is above target during the ZLB episode?
 - My answer: Yes! Policy rate normalization is faster.

How do we model lift off policy?

- Do you think the monetary policy objectives are the same after before, during, and after the ZLB?
 - *My answer:* Yes! Objectives are the same. ZLB is constraint on an instrument and not a policy regime change.
- All else equal, do you think that interest rates would rise faster after seven quarters if inflation is above target during the ZLB episode?
 - My answer: Yes! Policy rate normalization is faster.

Implication: Yes to both means standard Taylor rules are not appropriate summaries of policy

Standard modeling assumptions

• The standard way to close an NK Model

$$i_t = (1 - \rho_i)\bar{r} + \rho i_{t-1} + (1 - \rho)(\phi_\pi \pi_t + \phi_x x_t),$$
(1)

• The standard way to add the ZLB

$$i_t = \max\left\{ (1 - \rho_i)\bar{r} + \rho i_{t-1} + (1 - \rho)(\phi_\pi \pi_t + \phi_x x_t), \mathbf{0} \right\}.$$
 (2)

Standard modeling assumptions

• The standard way to close an NK Model

$$i_t = (1 - \rho_i)\bar{r} + \rho i_{t-1} + (1 - \rho)(\phi_\pi \pi_t + \phi_x x_t),$$
(3)

• The standard way to add the ZLB

$$i_t = \max\left\{ (1 - \rho_i)\bar{r} + \rho i_{t-1} + (1 - \rho)(\phi_\pi \pi_t + \phi_x x_t), 0 \right\}.$$
(4)

Policy objectives the same?

Standard modeling assumptions

• The standard way to close an NK Model

$$i_t = (1 - \rho_i)\bar{r} + \rho i_{t-1} + (1 - \rho)(\phi_\pi \pi_t + \phi_x x_t),$$
(5)

• The standard way to add the ZLB

$$i_t = \max\left\{ (1 - \rho_i)\bar{r} + \rho i_{t-1} + (1 - \rho)(\phi_\pi \pi_t + \phi_x x_t), \mathbf{0} \right\}.$$
(6)

Policy is history dependent?

Resolving New Keynesian Puzzles I

Note the following equivalent representations:

$$i_t - \rho i_{t-1} = (1 - \rho)\bar{r} + (1 - \rho)(\phi_\pi \pi_t + \phi_x x_t)$$
$$i_t = \bar{r} + (1 - \rho)\sum_{j=0}^t \rho^j (\phi_\pi \pi_{t-j} + \phi_x x_{t-j})$$

$$i_{t} = \bar{r} + \phi_{\pi}\omega_{t}^{\pi} + \phi_{x}\omega_{t}^{y}$$

$$\omega_{t}^{\pi} = \omega_{t-1}^{\pi} + (1-\rho)(\pi_{t} - \omega_{t-1}^{\pi})$$

$$\omega_{t}^{x} = \omega_{t-1}^{x} + (1-\rho)(x_{t} - \omega_{t-1}^{x})$$

Resolving New Keynesian Puzzles II

History dependence at the ZLB

• At the ZLB the central bank ignores everything that occurred

$$i_t = \max\left\{ (1 - \rho_i)\bar{r} + \rho i_{t-1} + (1 - \rho)(\phi_{\pi}\pi_t + \phi_x x_t), \mathbf{0} \right\}$$

• Central bank and private sector can keep track of objectives even when $i_t = 0$

$$\begin{aligned} i_t &= \max\{\bar{r} + \phi_{\pi}\omega_t^{\pi} + \phi_x\omega_t^{x}, 0\} \\ \omega_t^{\pi} &= \omega_{t-1}^{\pi} + (1-\rho)(\pi_t - \omega_{t-1}^{\pi}) \\ \omega_t^{x} &= \omega_{t-1}^{x} + (1-\rho)(x_t - \omega_{t-1}^{x}) \end{aligned}$$

Resolving New Keynesian Puzzles III

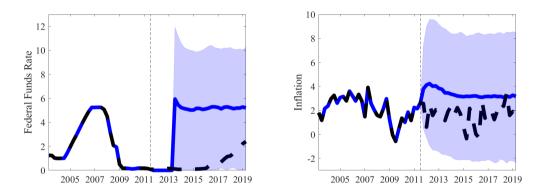


Figure: Smets and Wouters (2007) posterior estimates with data ending in 2004

Resolving New Keynesian Puzzles III

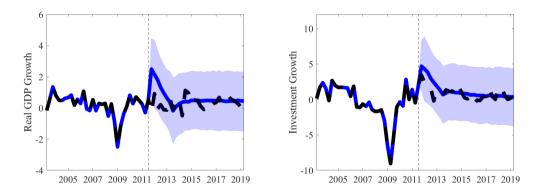


Figure: Smets and Wouters (2007) posterior estimates with data ending in 2004

What's wrong with a Taylor rule?

Svensson (JEL 2003) pg. 429 - 420

"Monetary policy by the world's more advanced central banks these days is at least as optimizing and forward-looking as the behavior of the most rational private agents. I find it strange that a large part of the literature on monetary policy still prefers to represent central bank behavior with the help of mechanical instrument rules."

Implication: Study target criteria instead...

Solve for optimal commitment from the timeless perspective:

$$\min\left\{-\frac{1}{2}\mathbb{E}_t\sum_{T=t}^{\infty}\left(\pi_T^2+\alpha x_T^2\right)\right\}$$

Subject to

$$x_t = \mathbf{E}_t x_{t+1} - \frac{1}{\sigma} (i_t - \mathbf{E}_t \pi_{t+1} - r_t^n)$$

$$\pi_t = \beta \mathbf{E}_t \pi_{t+1} + \kappa x_t + \mu_t$$

• Unconditional commitment (Blake, 2001; Jensen and McCallum, 2002)

$$x_t - \beta x_{t-1} = -\frac{\kappa}{\alpha} \pi_t$$

Unconditional target criterion:
$$x_t = -\frac{\kappa}{\alpha} \frac{\pi_t}{1 - \beta L}$$
.

Proposition

The optimal target criterion may be implemented by either of the following interest rate rules

Unconditional target criterion:
$$x_t = -\frac{\kappa}{\alpha} \frac{\pi_t}{1 - \beta L}$$
.

Proposition

The optimal target criterion may be implemented by either of the following interest rate rules

$$Optimal \ Rule \ 1: \qquad i_{t} = \beta i_{t-1} + \frac{\kappa}{\sigma \alpha} \pi_{t} + (1 - \beta L) \left(\frac{1}{\sigma} E_{t} y_{t+1} + E_{t} \pi_{t+1} + r_{t}^{n} \right) \qquad (9)$$

$$Optimal \ Rule \ 2: \qquad i_{t} = \frac{\kappa}{\sigma \alpha (1 - \beta)} \omega_{t}^{\pi} + \frac{1}{\sigma} E_{t} y_{t+1} + E_{t} \pi_{t+1} + r_{t}^{n} \qquad (10)$$

$$\omega_{t}^{\pi} = \omega_{t-1}^{\pi} + (1 - \beta) (\pi_{t} - \omega_{t-1}^{\pi})$$

Unconditional target criterion:
$$x_t = -\frac{\kappa}{\alpha} \frac{\pi_t}{1 - \beta L}$$
.

Proposition

The optimal target criterion may be implemented by either of the following interest rate rules

$$Optimal \ Rule \ 1: \qquad i_{t} = \beta i_{t-1} + \frac{\kappa}{\sigma \alpha} \pi_{t} + (1 - \beta L) \left(\frac{1}{\sigma} E_{t} y_{t+1} + E_{t} \pi_{t+1} + r_{t}^{n} \right)$$
(9)

$$Optimal \ Rule \ 2: \qquad i_{t} = \frac{\kappa}{\sigma \alpha (1 - \beta)} \omega_{t}^{\pi} + \frac{1}{\sigma} E_{t} y_{t+1} + E_{t} \pi_{t+1} + r_{t}^{n}$$
(10)

$$\omega_{t}^{\pi} = \omega_{t-1}^{\pi} + (1 - \beta) (\pi_{t} - \omega_{t-1}^{\pi})$$

Implication: We can approximate optimal policy in the absence of the ZLB with an inertial rule or a weighted average inflation rule.

Unconditional target criterion:
$$x_t = -\frac{\kappa}{\alpha} \frac{\pi_t}{1-\beta L}$$
.

Proposition

The optimal target criterion may be implemented by either of the following interest rate rules

$$Optimal \ Rule \ 1: \qquad i_t = \beta i_{t-1} + \frac{\kappa}{\sigma\alpha} \pi_t + (1 - \beta L) \left(\frac{1}{\sigma} E_t y_{t+1} + E_t \pi_{t+1} + r_t^n \right)$$
(11)
$$Optimal \ Rule \ 2: \qquad i_t = \frac{\kappa}{\sigma\alpha(1-\beta)} \omega_t^\pi + \frac{1}{\sigma} E_t y_{t+1} + E_t \pi_{t+1} + r_t^n$$
(12)
$$\omega_t^\pi = \omega_{t-1}^\pi + (1 - \beta) (\pi_t - \omega_{t-1}^\pi)$$

Implication: A weighted average inflation rule better approximates optimal policy with demand shocks

Flexible Average Inflation Targeting

Resolving puzzles:

- Weighted average rules with appropriate forward guidance approximate optimal commitment policy with ZLB constraint Here
 - Optimal commitment policy of Eggertsson and Woodford (2003) is puzzle free!

 \Rightarrow forward guidance still too powerful!

- Weighted average rules resolve quantitative aspects of the other puzzle (flexibility, fiscal multiplier, and toil) Here
- To resolve all New Keynesian puzzles monetary policy must promise to more than make up for past misses (consistent with optimal commitment) Here
- We don't need bounded rationality, incomplete markets, imperfect credibility, the fiscal theory, or any other fix for New Keynesian puzzles

Conclusion

- Provide an explanation and resolution of the New Keynesian ZLB puzzles (forward guidance, paradox of flexiblity, paradox of toil, ect.)
- Explanation and resolution does not rely on
 - Bounded rationality or myopia
 - Incomplete markets or HANK considerations
 - Imperfect credibility
 - Any change whatsoever to micro-foundations of the NK model
- Demonstrate that study of target criteria reveals both the explanation and the resolution
- Four keys to the results:
 - 1. Explicitly specifying monetary policy objectives in expectation is the source of the puzzle
 - 2. Explicitly specifying that monetary policy objectives remain the same before, during, and after the ZLB resolves the puzzles
 - 3. FAIT can explicitly convey monetary policy objectives before, during and after ZLB episodes
 - 4. Even in the absence of NK puzzles policy is still too powerful

THE UNIVERSITY OF SYDNEY

FAIT and optimal policy I

Solve for optimal commitment from the timeless perspective:

$$\min\left\{-\frac{1}{2}\mathbb{E}_t\sum_{T=t}^{\infty}\beta^{T-t}\left(\pi_t^2+\alpha x_t^2\right)\right\}$$

Subject to

$$\begin{aligned} x_t &= \mathbf{E}_t x_{t+1} - \frac{1}{\sigma} (i_t - \mathbf{E}_t \pi_{t+1} - r_t^n) \\ \pi_t &= \beta \mathbf{E}_t \pi_{t+1} + \kappa x_t \\ i_t &\geq 0 \end{aligned}$$

FAIT and optimal policy II

Eggertsson and Woodford (2003)

Before the shock: REE equilibrium with $x_t = \pi_t = 0, i_t = r_t^n = r_H$

The shock: Unexpectedly switch to $r_t^n = r_L < 0$

• Two-state Markov structure

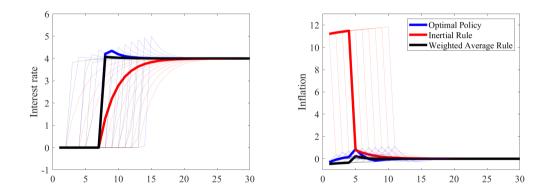
$$D = \left(\begin{array}{cc} 1-\delta & \delta \\ 0 & 1 \end{array}\right)$$

- Low state (L) persists with prob. 1δ ; high state (H) absorbing
- In the low state $i_t = 0$ always: ZLB constraint

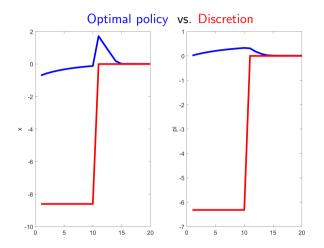
FAIT and optimal policy III

Optimal policy

- $\bullet\,$ The realized period of the shock is indexed by $\tau\,$
- For each au the central bank promises $k_{ au}$ periods of forward guidance
- Forward guidance policy:


$$k_\tau = \{0, 1, 2, 2, 2, 3, 3, 4, \ldots\}$$

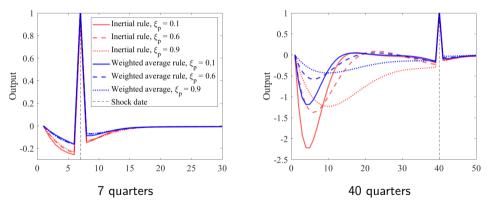
• Duration of the ZLB for any realization of uncertainty


$$T_{zlb} = \tau + k_{\tau}$$

$\ensuremath{\mathsf{FAIT}}$ and optimal policy $\ensuremath{\mathsf{IV}}$

FAIT and optimal policy V

Policy is still too powerful! • Back


Other puzzles I

Paradox of toil: anticipated negative productivity shock

Other puzzles II

Fiscal multiplier puzzle and paradox of flexibility: anticipated gov. spending shock

▶ Back

Resolving limit puzzles I

Study anticipated interest rate, government spending, and productivity shocks:

$$y_t = E_t y_{t+1} - \sigma^{-1} \left(i_t - E_t \pi_{t+1} - r_t^n \right) + g_t - E_t g_{t+1}$$
(13)

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \left(y_t - \delta_g g_t - a_t \right).$$
(14)

$$i_{t} = \begin{cases} \frac{i}{i_{t}} + \phi \pi_{t} & \text{for } t = T, T + 1, ..., T^{*} \\ \frac{i}{i_{t}} + \phi^{*} \omega_{t} & \text{for } t > T^{*}, \end{cases}$$
(15)
$$\omega_{t} = \begin{cases} \rho \omega_{t-1} + \pi_{t} & \text{for } t = T, T + 1, ..., T^{*} \\ \rho^{*} \omega_{t-1} + \pi_{t} & \text{for } t > T^{*}. \end{cases}$$
(16)

Resolving limit puzzles II

Definition 1 (forward guidance puzzle) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current inflation and output to an expected policy-rate shock Δ_p periods ahead, $i_{t+\Delta_p}$, goes to plus or minus infinity with Δ_p , i.e.,

$$\lim_{\Delta_p \to +\infty} |\partial z_T / \partial \bar{i}_{T+\Delta_p}| = \infty \text{ where } z \in \{\pi, y\}.$$

Resolving limit puzzles II

Definition 1 (forward guidance puzzle) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current inflation and output to an expected policy-rate shock Δ_p periods ahead, $i_{t+\Delta_p}$, goes to plus or minus infinity with Δ_p , i.e.,

$$\lim_{\Delta_p \to +\infty} |\partial z_T / \partial \bar{i}_{T+\Delta_p}| = \infty \text{ where } z \in \{\pi, y\}.$$

Proposition (Forward Guidance Puzzle)

The NK model with monetary policy given by equations (13), (14), (15), and (16) with $\phi^* > 1$, $0 \le \phi < 1$, and $0 < \rho^* < 1$ exhibits the forward guidance puzzle if $\rho < 1$. The forward guidance puzzle is resolved if $\rho > 1$.

Corollary (Resolution of the Quantitative Puzzles) When $0 < \rho < 1$ and $\Delta_p > 0$,

$$\frac{\partial}{\partial \rho} \left(\left| \frac{\partial z_T}{\partial \bar{i}_{T+\Delta_p}} \right| \right) < 0.$$

• This explains why puzzles mitigated in estiamted model

Resolving limit puzzles IV

Definition 2 (fiscal multiplier puzzle) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current inflation and output to an expected expansionary government spending shock Δ_p periods ahead, $g_{T+\Delta_p} > 0$, goes to plus or minus infinity with Δ_p , i.e.,

$$\lim_{\Delta_p \to +\infty} |\partial z_T / \partial g_{T+\Delta_p}| = \infty \text{ where } z \in \{\pi, y\}.$$

Resolving limit puzzles IV

Definition 2 (fiscal multiplier puzzle) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current inflation and output to an expected expansionary government spending shock Δ_p periods ahead, $g_{T+\Delta_p} > 0$, goes to plus or minus infinity with Δ_p , i.e.,

$$\lim_{\Delta_p \to +\infty} |\partial z_T / \partial g_{T+\Delta_p}| = \infty \text{ where } z \in \{\pi, y\}.$$

Proposition (Fiscal Multiplier Puzzle)

The NK model with monetary policy given by equations (13), (14), (15), and (16) with $\phi^* > 1$, $0 \le \phi < 1$, $0 < \rho^* < 1$, and $\rho \ne \overline{\rho} < 1$ exhibits the fiscal multiplier puzzle if $\rho < 1$. The fiscal multiplier puzzle is resolved if $\rho > 1$.

Resolving limit puzzles V

Definition 3 (paradox of toil) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current output to a positive supply shock Δ_p periods ahead, $a_{T+\Delta_p} > 0$, is weakly contractionary with Δ_p , i.e.,

 $\partial y_T / \partial a_{T+\Delta_p} \le 0.$

Resolving limit puzzles V

Definition 3 (paradox of toil) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current output to a positive supply shock Δ_p periods ahead, $a_{T+\Delta_p} > 0$, is weakly contractionary with Δ_p , i.e.,

 $\partial y_T / \partial a_{T+\Delta_p} \le 0.$

Proposition (The Paradox of Toil)

The NK model with monetary policy given by equations (13), (14), (15), and (16) with $\phi^* > 1$, $0 \le \phi < 1$, and $0 < \rho^* < 1$ has the property that there exists a $\tilde{\rho}$ such that if $\rho < \tilde{\rho}$, then equilibrium exhibits the paradox of toil, and if $\rho > \tilde{\rho}$, the paradox of toil is resolved.

Resolving limit puzzles VI

Definition 4 (paradox of flexibility) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current inflation and output to an expected shock Δ_p periods ahead goes to plus or minus infinity as κ goes to infinity, i.e.,

 $\lim_{\kappa \to +\infty} |\partial z_T / \partial v_{T+\Delta_p}| = \infty \text{ where } z \in \{\pi,y\} \text{ and } v = \{i^*,g,a\}.$

Resolving limit puzzles VI

Definition 4 (paradox of flexibility) When the policy rate is expected to be set passively during the next $\Delta_p > 0$ periods, the response of current inflation and output to an expected shock Δ_p periods ahead goes to plus or minus infinity as κ goes to infinity, i.e.,

$$\lim_{\kappa \to +\infty} |\partial z_T / \partial v_{T+\Delta_p}| = \infty \text{ where } z \in \{\pi, y\} \text{ and } v = \{i^*, g, a\}$$

Proposition (Paradox of Flexibility)

The NK model with monetary policy given by equations (13), (14), (15), and (16) with $\phi^* > 1$, $0 \le \phi < 1$, and $0 < \rho^* < 1$ does not exhibit the paradox of flexibility if $\rho > 0$.

Back

